Parallel Worlds PDF Book by Michio Kaku

Parallel-Worlds-PDF

Click here to Download Parallel Worlds PDF Book by Michio Kaku English having PDF Size 2.9 MB and No of Pages 412 .

WHEN I WAS A CHILD, I had a personal conflict over my beliefs. My parents were raised in the Buddhist tradition. But I attended Sunday school every week, where I loved hearing the biblical stories about whales, arks, pillars of salt, ribs, and apples. I was fascinated by these Old Testament parables, which were my favorite part of Sunday school.

Parallel Worlds PDF Book by Michio Kaku

Name of Book Parallel Worlds
Author Michio Kaku
PDF Size 2.9 MB
No of Pages 412
Language  English
Buy Book From Amazon

About Book – Parallel Worlds PDF Book

It seemed to me that the parables about great floods, burning bushes, and parting waters were so much more exciting than Buddhist chanting and meditation. In fact, these ancient tales of heroism and tragedy vividly illustrated deep moral and ethical lessons which have stayed with me all my life. One day in Sunday school we studied Genesis.

To read about God thundering from the heavens, “Let there be Light!” sounded so much more dramatic than silently meditating about Nirvana. Out of naïve curiosity, I asked my Sunday school teacher, “Did God have a mother?” She usually had a snappy answer, as well as a deep moral lesson to offer. This time, however, she was taken aback.

Click here to Download Parallel Worlds PDF Book

No, she replied hesitantly, God probably did not have a mother. “But then where did God come from?” I asked. She mumbled that she would have to consult with the minister about that question. To describe the universe, cosmologists sometimes use the example of looking down from the top of the Empire State Building, which soars more than a hundred floors above Manhattan.

As you look down from the top, you can barely see the street level. If the base of the Empire State Building represents the big bang, then, looking down from the top, the distant galaxies would be located on the tenth floor. The distant quasars seen by Earth telescopes would be on the seventh floor. The cosmic background measured by the WMAP satellite would be just half an inch above the street.

For More PDF Book Click Below Links….!!!

The Third Angle PDF Book

Beyond Einstein PDF Book

Everyone in My Family Has Killed Someone PDF Book

Why Has Nobody Told Me This Before PDF Book

The Handmaids Tale PDF Book

Primal Leadership  PDF Book

Act like a Lady Think like a Man PDF Book

And now the WMAP satellite has given us the precise measurement of the age of the universe to an astonishing 1 percent accuracy: 13.7 billion years. The WMAP mission is the culmination of over a decade of hard work by astrophysicists. The concept of the WMAP satellite was first proposed to NASA in 1995 and was approved two years later.

On June 30, 2001, NASA sent the WMAP satellite aboard a Delta II rocket into a solar orbit perched between Earth and the Sun. The destination was carefully chosen to be the Lagrange point 2 (or L2, a special point of relative stability near Earth). From this vantage point, the satellite always points away from the Sun, Earth, and Moon and hence has a totally unobstructed view of the universe.

It completely scans the entire sky every six months. Its instrumentation is state-of-the-art. With its powerful sensors, it can detect the faint microwave radiation left over from the big bang that bathes the universe, but is largely absorbed by our atmosphere. The aluminum-composite satellite measures 3.8 meters by 5 meters (about 11.4 feet by 15 feet) and weighs 840 kilograms (1,850 pounds). Parallel Worlds PDF Book

It has two back-to-back telescopes that focus the microwave radiation from the surrounding sky, and eventually it radios the data back to Earth. It is powered by just 419 watts of electricity (the power of five ordinary lightbulbs). Sitting a million miles from Earth, the WMAP satellite is well above Earth’s atmospheric disturbances, which can mask the faint microwave background.

And it is able to get continuous readings of the entire sky. The multiverse idea is appealing, because all we have to do is assume that spontaneous breaking occurs randomly. No other assumptions have to be made. Each time a universe sprouts off another universe, the physical constants differ from the original, creating new laws of physics.

If this is true, then an entirely new reality can emerge within each universe. But this raises the intriguing question: what do these other universes look like? The key to understanding the physics of parallel universes is to understand how universes are created, that is, to understand precisely how spontaneous breaking occurs. Parallel Worlds PDF Book

When a universe is born and spontaneous breaking takes place, this also breaks the symmetry of the original theory. To a physicist, beauty means symmetry and simplicity. If a theory is beautiful, this means it has a powerful symmetry that can explain a large body of data in the most compact, economical manner.

More precisely, an equation is considered to be beautiful if it remains the same when we interchange its components among themselves. One great advantage to finding the hidden symmetries of nature is that we can show that phenomena that are seemingly distinct are actually manifestations of the same thing, linked together by a symmetry.

For example, we can show that electricity and magnetism are actually two aspects of the same object, because there is a symmetry that can interchange them within Maxwell’s equations. Similarly, Einstein showed that relativity can turn space into time and vice versa, because they are part of the same object, the fabric of space-time. Parallel Worlds PDF Book

Think of a snowflake, which has a beautiful six-fold symmetry, a source of endless fascination. The essence of its beauty is that it remains the same if we rotate the snowflake by 60 degrees. This also means that any equation we write down to describe the snowflake should reflect this fact, that it remains invariant under rotations of multiples of 60 degrees.

Mathematically, we say that the snowflake has C6 symmetry. Symmetries then encode the hidden beauty of nature. But in reality, today these symmetries are horribly broken. The four great forces of the universe do not resemble each other at all. In fact, the universe is full of irregularities and defects; surrounding us are the fragments and shards of the original, primordial symmetry shattered by the big bang.

Thus, the key to understanding possible parallel universes is to understand “symmetry breaking”—that is, how these symmetries might have broken after the big bang. As physicist David Gross has said, “The secret of nature is symmetry, but much of the texture of the world is due to mechanisms of symmetry breaking.” Parallel Worlds PDF Book Download

Think of the way a beautiful mirror shatters into a thousand pieces. The original mirror possessed great symmetry. You can rotate a mirror at any angle and it still reflects light in the same way. But after it is shattered, the original symmetry is broken. Determining precisely how the symmetry is broken determines how the mirror shatters.

Theologians have also wrestled with this question. Most religions of the world believe in some form of predestination, the idea that God is not only omnipotent (all-powerful) and omnipresent (exists everywhere), but also omniscient (knows everything, even the future). In some religions, this means that God knows whether we will go to heaven or hell, even before we are born.

In essence, there is a “book of destiny” somewhere in heaven with all of our names listed, including our birth date, our failures and triumphs, our joys and our defeats, even our death date, and whether we will live in paradise or eternal damnation. (This delicate theological question of predestination, in part, helped to split the Catholic Church in half in 1517. Parallel Worlds PDF Book Download

When Martin Luther tacked the ninety-five theses on the church at Wittenberg. In it, he attacked the church’s practice of selling indulgences—essentially bribes that paved the journey to heaven for the rich. Perhaps, Luther seemed to say, God does know our future ahead of time and our fates are predestined, but God cannot be persuaded to change his mind by our making a handsome donation to the church.

But to physicists who accept the concept of probability, the most controversial postulate by far is the third postulate, which has given headaches to generations of physicists and philosophers. “Observation” is a loose, ill-defined concept. Moreover, it relies on the fact that there are actually two types of physics: one for the bizarre subatomic world.

Where electrons can seemingly be in two places at the same time, and the other for the macroscopic world that we live in, which appears to obey the commonsense laws of Newton. According to Bohr, there is an invisible “wall” separating the atomic world from the everyday, familiar macroscopic world. Parallel Worlds PDF Book Download

While the atomic world obeys the bizarre rules of the quantum theory, we live out our lives outside that wall, in the world of well-defined planets and stars where the waves have already collapsed. In addition to the five superstring theories, there was another nagging question that had been forgotten in the rush to solve string theory.

Back in 1976, three physicists, Peter Van Nieuwenhuizen, Sergio Ferrara, and Daniel Freedman, then working at the State University of New York at Stony Brook, discovered that Einstein’s original theory of gravity could become supersymmetric if one introduced just one new field, a superpartner to the original gravity field (called the gravitino, meaning “little graviton,” with spin 3/2).

This new theory was called supergravity, and it was based on point particles, not strings. Unlike the superstring, with its infinite sequence of notes and resonances, supergravity had just two particles. In 1978, it was shown by Eugene Cremmer, Joël Scherk, and Bernard Julia of the École Normale Supérieure that the most general supergravity could be written down in eleven dimensions. Parallel Worlds PDF Book Free

If we tried to write down supergravity theory in twelve or thirteen dimensions, mathematical inconsistencies would arise.) In the late 1970s and early 1980s, it was thought that supergravity might be the fabled unified field theory. The theory even inspired Stephen Hawking to speak of “the end of theoretical physics” being in sight when he gave his inaugural lecture upon taking the Lucasian Chair of Mathematics.

At Cambridge University, the same chair once held by Isaac Newton. But supergravity soon ran into the same difficult problems that had killed previous theories. Although it had fewer infinities than ordinary field theory, in the final analysis supergravity was not finite and was potentially riddled with anomalies. Like all other field theories (except for string theory), it blew up in scientists’ faces.

LIGO is an engineering marvel. Since air molecules may absorb the laser light, the tube containing the light has to be evacuated down to a trillionth of atmospheric pressure. Each detector takes up 300,000 cubic feet of space, meaning that LIGO has the largest artificial vacuum in the world. Parallel Worlds PDF Book Free

What gives LIGO such sensitivity, in part, is the design of the mirrors, which are controlled by tiny magnets, six in all, each the size of an ant. The mirrors are so polished that they are accurate to one part in 30 billionths of an inch. “Imagine the earth were that smooth. Then the average mountain wouldn’t rise more than an inch,” says GariLynn Billingsley, who monitors the mirrors.

They are so delicate that they can be moved by less than a millionth of a meter, which makes the LIGO mirrors perhaps the most sensitive in the world. “Most control systems engineers’ jaws drop when they hear what we’re trying to do,” says LIGO scientist Michael Zucker. Because LIGO is so exquisitely balanced, it is sometimes plagued by slight, unwanted vibrations from the most unlikely sources.

The detector in Louisiana, for example, cannot be run during the day because of loggers who are cutting trees 1,500 feet from the site. (LIGO is so sensitive that even if the logging were to take place a mile away, it still could not be run during the daytime.) Even at night, vibrations from passing freight trains at midnight and 6 a.m. bracket how much continuous time the LIGO can operate. Parallel Worlds PDF Book Free

Even something as faint as ocean waves striking the coastline miles away can affect the results. Ocean waves breaking on North American beaches wash ashore every six seconds, on average, and this creates a low growl that can actually be picked up by the lasers. The noise is so low in frequency, in fact, that it actually penetrates right through the earth.

“It feels like a rumble,” says Zucker, commenting about this tidal noise. “It’s a huge headache during the Louisiana hurricane season.” LIGO is also affected by the tides created by the Moon’s and Sun’s gravity tugging on Earth, creating a disturbance of several millionths of an inch. For LIGO to detect the collision of two black holes (within a distance of 300 million light-years.

A scientist could wait anywhere from a year to a thousand years. Many astronomers may have second thoughts about investigating such an event with LIGO if it means that their great-greatgreat . . . grandchildren will be the ones to witness the event. But as LIGO scientist Peter Saulson has said, “People take pleasure in solving these technical challenges. Parallel Worlds PDF Book Free

Much the way medieval cathedral builders continued working knowing they might not see the finished church. But if there wasn’t a fighting chance to see a gravity wave during my life career, I wouldn’t be in this field. It’s not just Nobel fever . . . The levels of precision we are striving for mark our business; if you do this, you have ‘the right stuff.’

” With LIGO II, the chances are much better of finding a truly interesting event in our lifetime. LIGO II might detect colliding black holes within a much larger distance of 6 billion light-years at a rate of ten per day to ten per year.